

Development and utilization of a dynamic gray-box model for a fermentation process of spore production Joschka Winz^a, Supasuda Assawajaruwan^b, Uwe Piechottka^b, Sebastian Engell^a

^a: TU Dortmund university, Process dynamics and operations group

^b: Evonik Operations GmbH

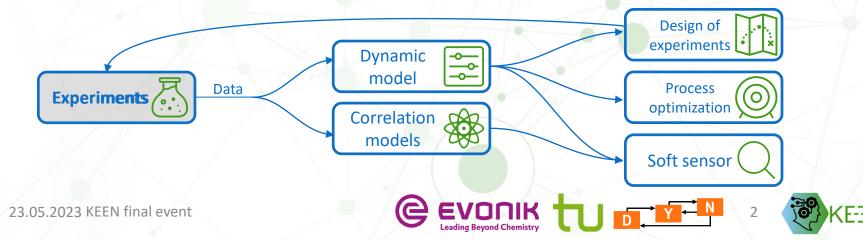
for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

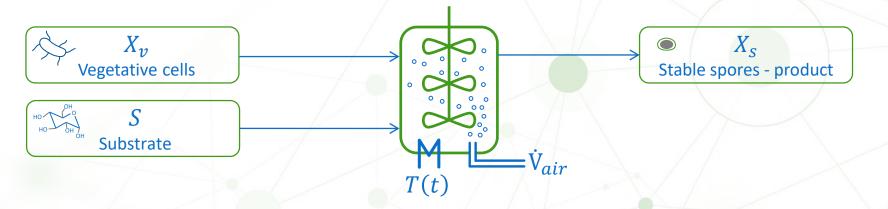
23.05.2023

Use case fermentation of *Bacillus Subtilis*

- Fermentation of the sporulating bacterium *Bacillus Subtilis*
 - Long batch time
 - Unknown optimal operation
 - Time- and labor-intensive analytical processes to control the quality and quantity of the product
- **Objective 1: Process optimization** Optimize the batch time while maintaining a sufficient product yield
- **Objective 2: Soft sensor** Develop a state estimator to gain online insights into the fermenter state

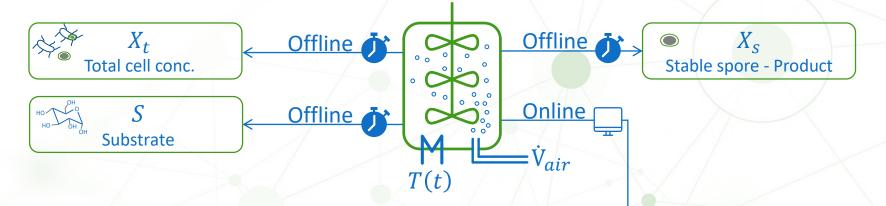


Sporulation of *Bacillus Subtilis*



Process optimization: Find the optimal temperature trajectory to minimize the batch time

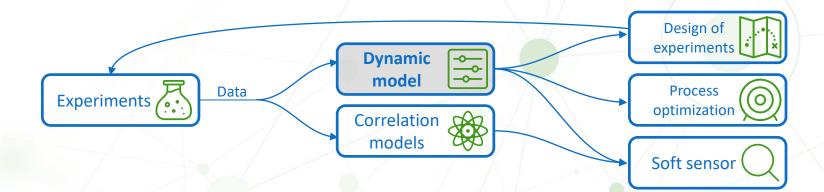
Sporulation of *Bacillus Subtilis*



- Process optimization: Find the optimal temperature trajectory to minimize the batch time
- Soft sensor: Use the online measurements for real time monitoring of X_t, X_s and S
 23.05.2023 KEEN final event

Online measurements

- Turbidity
- CO_2 / O_2 in off gas
- *pH* value
- Capacitance (dielectric spectroscopy)



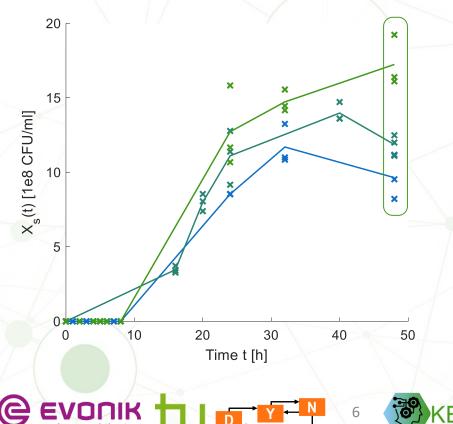
Dynamic gray-box modelling

Dynamic gray-box modelling

- Knowledge about the mass and energy balances and state variables available
- But e.g. kinetic expressions unknown
- Database from the fermentation experiments
 - ≈600 data points
 - Large measurement uncertainty
 - Significant process variability

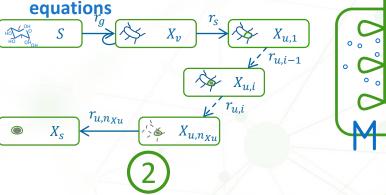
→ Dynamic gray-box model with embedded ML-submodels

How to identify the model structure and parameters without a lot of trial-and-error?

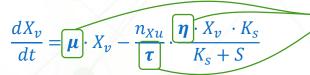


Problem decomposition

1. Set up the first principles model



2. Specify the embedded variables that are described by the unknown submodels



 μ, τ, η : embedded variables, which are described by an ML-submodel

J. Winz, S. Engell, A methodology for gray-box modeling of nonlinear ODE systems, in: L. Montastruc, S. Negny (Eds.), Computer Aided Chemical Engineering, Elsevier, (2022): pp. 1483–1488.
 J. Winz, S. Engell, Reliable nonlinear dynamic gray-box modeling by regularized training data estimation and sensitivity analysis, IFAC-PapersOnLine. 55 (2022) 86–93.
 J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023).

0 0

[1-3]

Problem decomposition

1. Set up the first principles model

 X_{n}

 $X_{u,n_{Xv}}$

 $X_{u,1}$

 $r_{u,i-1}$

 $X_{u,i}$

 $r_{u,i}$

equations

Xc

 $r_{u,n_{Xu}}$

HOL

$$\frac{dX_{v}}{dt} = \boldsymbol{\mu} \cdot X_{v} - \frac{n_{Xu}}{\boldsymbol{\tau}} \cdot \frac{\boldsymbol{\eta} \cdot X_{v} \cdot K_{s}}{K_{s} + S}$$

the embedded variables

 $\mu(t_k)$

outputs

```
Training set:
X_v(t_k)T(t_k)
```

inputs

What values should μ, τ, η assume to describe the experimental data?

3. Estimate a training set for **4.** Use the estimated training set for input determination and model selection

ML

 $\frac{dX_{v}}{dX_{v}} = \left[\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{X}_{v}, \boldsymbol{T})\right] X_{v}$

ML Model structure

 Θ_{ML}

 $\eta_{\theta}(T) X_{v} K_{s}$

 $K_{\rm s} + S$

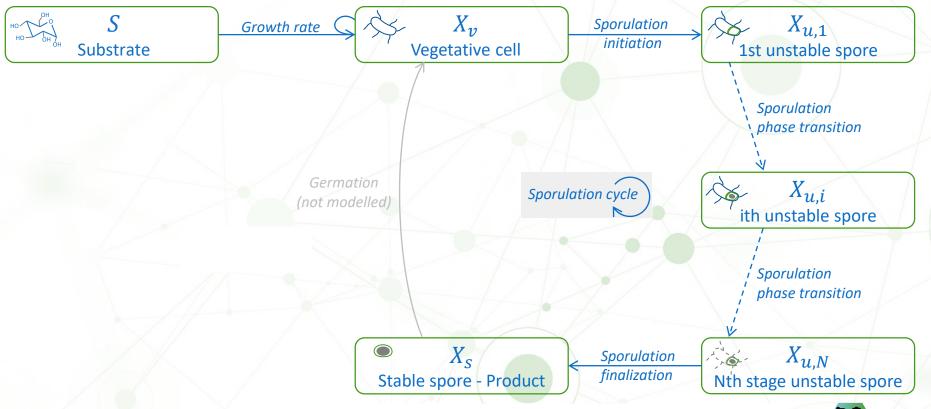
[1-3]

5. Full dynamic parameter estimation with the previously trained ML-model parameters as initial values

 n_{Xu}

[1] J. Winz, S. Engell, A methodology for gray-box modeling of nonlinear ODE systems, in: L. Montastruc, S. Negny (Eds.), Computer Aided Chemical Engineering, Elsevier, (2022): pp. 1483–1488. [2] J. Winz, S. Engell, Reliable nonlinear dynamic gray-box modeling by regularized training data estimation and sensitivity analysis, IFAC-PapersOnLine. 55 (2022) 86–93. [3] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023).

Model structure

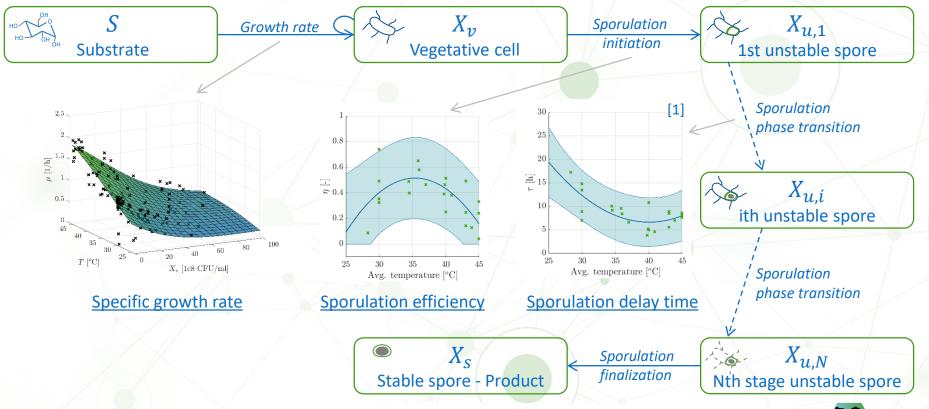


23.05.2023 KEEN final event

[1] J. Winz, S. Assawajaruwan, S. Engell, *Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production*, Chemie Ingenieur Technik, in Press. (2023).

9

Model structure

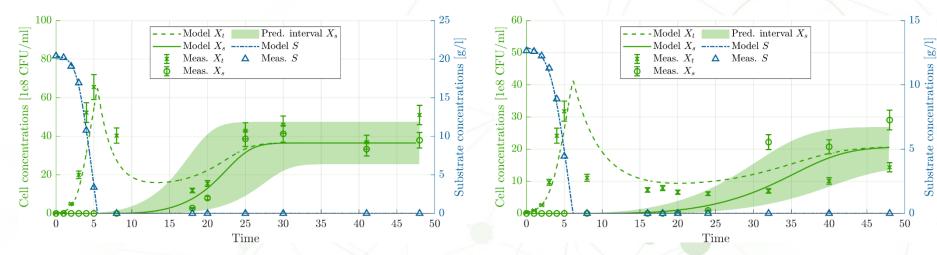


23.05.2023 KEEN final event

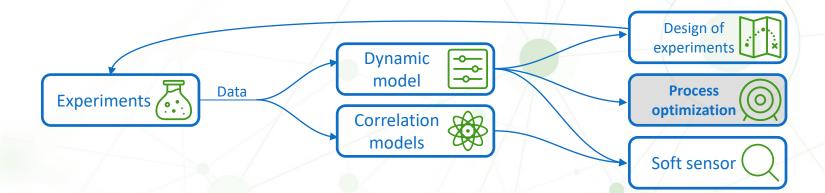
[1] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023).

10

Dynamic gray-box model predictions



- Accurate predictions for all state variables
- Enables model-based applications
 - Model-based optimal design of experiments
 - Process optimization
 - Soft sensor



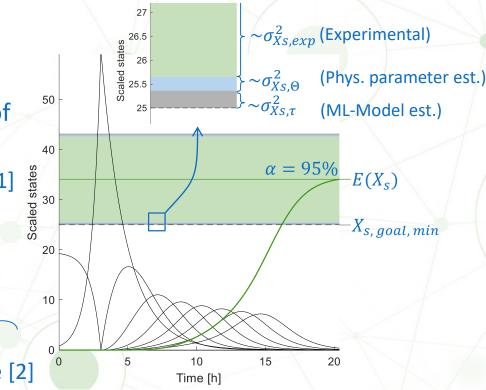
Process optimization methodology

Chance constrained optimization

- Optimization goal: Minimize the batch time, while statistically guaranteeing a minimum harvest of spores
 - Chance constrained optimization [1]
- Challenge: Multiple different sources of uncertainty

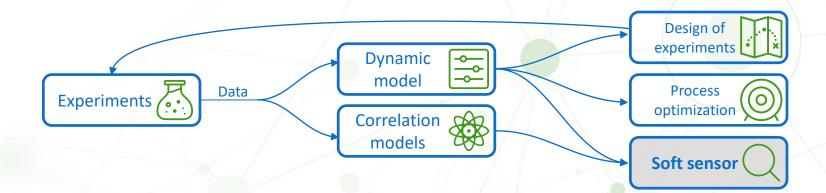
$$\sigma_{Xs}^2 = \sigma_{Xs,exp}^2 + \sigma_{Xs,\Theta}^2 + \sigma_{Xs,ML}^2$$

Uncertainty quantified using the jackknife variance [2]



13

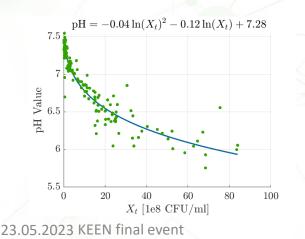
 [1] Li, Pu, Harvey Arellano-Garcia, and Günter Wozny. "Chance constrained programming approach to process optimization under uncertainty." Computers & chemical engineering 32.1-2 (2008): 25-45.
 [2] R.G. Miller, The jackknife - a review, Biometrika. 61 (1974) 1–15.

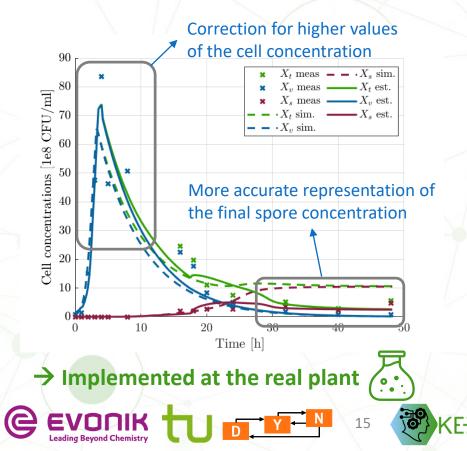


Soft sensor development

Phase adaptive state estimator

- Different phases during the batch: growth, sporulation & stable phase
- A simple correlation model is developed for each phase
 → Unscented Kalman Filter





Summary and further work

Summary

- Development of a dynamic gray-box model for a complex process
- Utilization of chance constrained optimization
- Implementation of the phase adaptive state estimator on the real plant

Outlook

- Description of the model structure uncertainty
- Use of multivariate correlations
- Benchmarking of EKF vs. UKF vs. Particle Filter

16