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Use case fermentation of Bacillus Subtilis

• Fermentation of the sporulating bacterium Bacillus Subtilis
– Long batch time

– Unknown optimal operation

– Time- and labor-intensive analytical processes to control the quality and quantity of the product

• Objective 1: Process optimization - Optimize the batch time while maintaining a sufficient product yield

• Objective 2: Soft sensor - Develop a state estimator to gain online insights into the fermenter state
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Sporulation of Bacillus Subtilis
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• Process optimization: Find the 
optimal temperature trajectory to 
minimize the batch time 
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Sporulation of Bacillus Subtilis
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• Process optimization: Find the 
optimal temperature trajectory to 
minimize the batch time 

• Soft sensor: Use the online 
measurements for real time 
monitoring of 𝑋𝑡, 𝑋𝑠 and 𝑆

Online measurements

• Turbidity

• 𝐶𝑂2 / 𝑂2 in off gas

• 𝑝𝐻 value

• Capacitance (dielectric spectroscopy)
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Dynamic gray-box modelling
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Dynamic gray-box modelling

• Knowledge about the mass and energy 
balances and state variables available 

• But e.g. kinetic expressions unknown

• Database from the fermentation 
experiments
– ≈600 data points

– Large measurement uncertainty

– Significant process variability

 Dynamic gray-box model with
embedded ML-submodels

How to identify the model structure and 
parameters without a lot of trial-and-error?
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Problem decomposition

𝝁, 𝝉, 𝜼: embedded variables, which are 
described by an ML-submodel

2
2. Specify the embedded variables that are 

described by the unknown submodels
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= 𝝁 ⋅ 𝑋𝑣 −
𝑛𝑋𝑢
𝝉

⋅
𝜼 ⋅ 𝑋𝑣 ⋅ 𝐾𝑠
𝐾𝑠 + 𝑆

[1-3]1
1. Set up the first principles model 

equations

[1] J. Winz, S. Engell, A methodology for gray-box modeling of nonlinear ODE systems, in: L. Montastruc, S. Negny (Eds.), Computer Aided Chemical Engineering, Elsevier, (2022): pp. 1483–1488. 
[2] J. Winz, S. Engell, Reliable nonlinear dynamic gray-box modeling by regularized training data estimation and sensitivity analysis, IFAC-PapersOnLine. 55 (2022) 86–93. 
[3] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023).



823.05.2023 KEEN final event 
D

NYDD
NNYY

Problem decomposition
1

2
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𝑑𝑋𝑣
𝑑𝑡
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⋅
𝜼 ⋅ 𝑋𝑣 ⋅ 𝐾𝑠
𝐾𝑠 + 𝑆

3. Estimate a training set for 
the embedded variables

4. Use the estimated training set for 
input determination and model 
selection

5. Full dynamic parameter estimation 
with the previously trained ML-model 
parameters as initial values

What values should 𝝁,𝝉,𝜼
assume to describe the 

experimental data?

5

43

⋮
𝜇(𝑡𝑘)
⋮

⋮
𝑋𝑣(𝑡𝑘)

⋮

⋮
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⋮
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ML Model
structure

Θ𝑀𝐿

ML 
toolbox

+

Training set: Training 
set

𝑑𝑋𝑣
𝑑𝑡

= 𝝁𝜽(𝑿𝒗, 𝑻)𝑋𝑣 −
𝑛𝑋𝑢
𝝉𝜽(𝑻)

⋅
𝜼𝜽(𝑻)𝑋𝑣𝐾𝑠
𝐾𝑠 + 𝑆

1. Set up the first principles model 
equations

2. Specify the embedded variables 
described by the unknown submodels

[1] J. Winz, S. Engell, A methodology for gray-box modeling of nonlinear ODE systems, in: L. Montastruc, S. Negny (Eds.), Computer Aided Chemical Engineering, Elsevier, (2022): pp. 1483–1488. 
[2] J. Winz, S. Engell, Reliable nonlinear dynamic gray-box modeling by regularized training data estimation and sensitivity analysis, IFAC-PapersOnLine. 55 (2022) 86–93. 
[3] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023).

[1-3]
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Model structure
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[1] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation 
Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023). 
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Model structure
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[1] J. Winz, S. Assawajaruwan, S. Engell, Development of a Dynamic Gray-Box Model of a Fermentation 
Process for Spore Production, Chemie Ingenieur Technik, in Press. (2023). 
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Dynamic gray-box model predictions

• Accurate predictions for all state variables
• Enables model-based applications

– Model-based optimal design of experiments
– Process optimization
– Soft sensor
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Chance constrained optimization

• Optimization goal: Minimize the 
batch time, while statistically
guaranteeing a minimum harvest of 
spores

– Chance constrained optimization [1]

• Challenge: Multiple different 
sources of uncertainty

[1] Li, Pu, Harvey Arellano-Garcia, and Günter Wozny. "Chance constrained programming approach to process optimization under uncertainty." 
Computers & chemical engineering 32.1-2 (2008): 25-45.
[2] R.G. Miller, The jackknife - a review, Biometrika. 61 (1974) 1–15. 
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(Experimental)

(Phys. parameter est.)

(ML-Model est.)

𝐸(𝑋𝑠)

𝑋𝑠, 𝑔𝑜𝑎𝑙, 𝑚𝑖𝑛

Uncertainty quantified 
using the jackknife variance [2]
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Phase adaptive state estimator

• Different phases during the batch: 
growth, sporulation & stable phase

• A simple correlation model is 
developed for each phase

 Unscented Kalman Filter
More accurate representation of 
the final spore concentration

Correction for higher values
of the cell concentration

 Implemented at the real plant
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Summary and further work

Summary

• Development of a dynamic gray-box 
model for a complex process

• Utilization of chance constrained 
optimization 

• Implementation of the phase adaptive 
state estimator on the real plant

Outlook

• Description of the model structure 
uncertainty

• Use of multivariate correlations

• Benchmarking of EKF vs. UKF vs. 
Particle Filter 


